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Figure 1: Our generative model can produce a wide variety of faces within a plausible biophysical manifold while enabling manipulations
within realistic ranges. We showcase three generated examples conditioned on a random identity as well as random biophysical and demo-
graphic characteristics. For each example, the first row illustrates manipulations of these conditions while maintaining the same identity. In
the second row, we keep the original conditions fixed and sample random identities.

We present a novel generative model that synthesizes photorealistic, biophysically plausible faces by capturing the intricate
relationships between facial geometry and biophysical attributes. Our approach models facial appearance in a biophysically
grounded manner, allowing for the editing of both high-level attributes such as age and gender, as well as low-level biophysical
properties such as melanin level and blood content. This enables continuous modeling of physical skin properties that correlate
changes in skin properties with shape changes. We showcase the capabilities of our framework beyond its role as a generative
model through two practical applications: editing the texture maps of 3D faces that have already been captured, and serving
as a strong prior for face reconstruction when combined with differentiable rendering. Our model allows for the creation
of physically-based relightable, editable faces with consistent topology and uv layout that can be integrated into traditional

computer graphics pipelines.
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1. Introduction

The synthesis of photorealistic human faces has long been a chal-
lenging task in computer graphics and vision. A person’s identity
is defined by the combination of overall shape (geometry), fea-
tures like wrinkles and pores (medium and high-frequency details),
and skin tone, often presenting heterogeneities such as freckles and
moles (texture). These elements are correlated and influenced by
factors such as gender, age, and ethnicity. Accurately reproducing
these aspects is crucial for achieving photorealism, as any decor-
relation can lead to mischaracterization or ultimately result in the
uncanny valley effect [MMK12, ZAJ*15].

The introduction of 3D morphable models (3DMM) [BV99] al-
lowed for controlling the shape and appearance of a face by means
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of a parametric space, which has led to a vast literature on the
topic [EST*20]. However, existing approaches typically focus on
specific aspects of face representation, often emphasizing geom-
etry or texture alone. Recently, a branch of neural implicit mod-
els [GKG*23, ZWS*23, KQG*23, GKR*24, KGN24, GKG*24,
LDML*24, SSS*24, LKB*24] have demonstrated impressive re-
sults in capturing photorealistic faces, disentangling identity and
expression, but they lack editability through meaningful parame-
ters. Moreover, most models do not account for correlations be-
tween shape and appearance as a function of features like age, gen-
der or skin properties. Those that attempt to model these correla-
tions often rely on human-made labels [LBZ*20, DTP23], intro-
ducing inaccuracies that compromise the authenticity of the gener-
ated faces.

In this paper, we introduce a novel generative model that syn-
thesizes complete 3D faces, achieving both photorealism and bio-
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physical grounding. Our approach leverages real human captures
to model facial geometry and skin properties, enabling the editing
of high-level attributes like age and gender, as well as low-level
biophysical properties such as melanin and blood concentrations.
A key innovation of our approach is the continuous modeling of
biophysical skin properties, estimated directly from the albedo tex-
tures [AXX*23]. This eliminates the reliance on subjective human
annotations, ensuring that the generated faces and the editing space
are biophysically plausible, allowing for meaningful high- and low-
level manipulations that maintain correlations between shape fea-
tures, skin properties, and demographic data.

At its core, our approach encodes geometry and appearance
within the texture space by representing geometric deformations
through texture-encoded data, alongside the appearance maps.
This allows us to establish a unified framework where large scale
geometry, medium and high frequency geometric details, as well
as albedo and their correlations, can be learned. Specifically,
we integrate a base mesh with both low- and high-frequency
deformation maps, in addition to an albedo map. We then employ
a latent diffusion-based generator paired with a refiner network
to produce the aforementioned maps at mid-resolution and their
high-resolution counterparts, respectively. This comprehensive
modeling allows for the creation of face assets that are ready for
integration into computer graphics pipelines.

Beyond generation, we demonstrate the usefulness of our model
in two applications: a) editing the texture maps of 3D faces that
have already been captured, and b) providing a strong prior to guide
face reconstruction when combined with differentiable rendering
techniques. In summary, our contributions are:

e A multi-modal generative method for synthesizing photoreal-
istic, biophysically plausible faces that are ready for computer
graphics engines, being relightable and riggable due to their
foundation on triangle meshes with consistent topology and tex-
ture parametrization.

e Continuous modeling of skin appearance by extracting objective
labels based on the biophysical properties of skin. This elimi-
nates the reliance on subjective human annotations. In conjunc-
tion with other demographic data like age and gender, the con-
tinuous modeling of skin properties enables high- and low-level
manipulations while retaining correlations between skin appear-
ance and shape features.

e Our model serves as a robust prior in inverse rendering prob-
lems, where the appearance of the face is the result of the in-
tricate interactions between light and complex material proper-
ties over the facial shape features. Its effectiveness is demon-
strated through various examples in combination with differen-
tiable path tracing techniques, enabling plausible edits once the
face is reconstructed.

2. Related Work

The field of 3D face generation and reconstruction has been a
long-standing focus of research. Due to the vast literature avail-
able, we refer readers to comprehensive surveys on 3D Morphable

Models (3DMM) [EST*20] and face modeling [TLL23]. For im-
plicit representations, we recommend recent reviews on neural
rendering [PYG*24], diffusion models [PYG*24] and 3D gener-
ation [LZK*24]. In this section, we focus on closely related work
that shares similarities with our approach in terms of representa-
tion, methodology, and outcome.

2.1. Biophysical Skin Models

Several biophysical skin models have been developed to simulate
the complex interactions between light and human skin. Tsumura
et al. [THM99, TOS*03] introduced an image-based technique
for separating melanin and hemoglobin distributions in skin us-
ing independent-component analysis. Donner and Jensen [DJ06]
proposed a two-layer skin model with parameters controlling oil,
melanin, and hemoglobin concentrations. Later, a multi-layered
model [DWd*08] featured spatially-varying absorption and scat-
tering parameters. Jimenez et al. [JSB* 10] modeled changes in skin
appearance due to varying melanin and hemoglobin concentrations
caused by emotional or physical states. Krishnaswamy and Bara-
noski [KB04, BK10] produced a seminal paper for very detailed
modeling with many layers and all the chromophores involved in
skin’s optical properties. Iglesias Guitian [[GAJG15] simulates the
effects of skin aging, while Chen et al. [CBKM15] provide a com-
prehensive understanding of skin’s spectral characteristics through
hyperspectral skin modeling.

2.2. Generative Models of Human Faces

Building on the seminal work on morphable face models by Blanz
and Vetter [BV99], which used two separate linear models to
capture variations in texture and geometry from approximately
200 subject scans, numerous subsequent parametric models have
been developed aiming to provide more intuitive control, incor-
porate additional aspects such as facial expressions, and extend
to more diverse identity representations using larger datasets like
BFM, LSFM or FLAME [VBPP05, PKA*09, CWZ* 14, BRZ* 16,
BRP*18, LBB*17]. In recent years, there has been a surge of in-
terest in generative models of high-quality, photorealistic face as-
sets. Chandran et al. [CBGB20] employs variational autoencoders
(VAESs) to disentangle expression and identity on 224 captured sub-
jects, modeling geometry and albedo. Subsequently, several Gen-
erative Adversarial Network (GAN)-based approaches have been
proposed. Gecer et al. [GLP*20] uses a multi-branch GAN to syn-
thesize texture and head-space geometry and low frequency nor-
mals, all defined in texture space. However, this approach lacks
controllable edits and does not model medium and high frequency
geometric details like bumps or normals. Exclusively focused on
high-quality, high-resolution PBR maps, GANtlitz [GCM*24] pro-
posed a patch-based architecture built upon StyleGAN2 [KLA*20].
This was trained with under a hundred facial captures to generate
albedo, displacement, specular, and normal maps, ensuring consis-
tency across different map types. However, the model omits shape
modeling and does not show reconstruction capabilities.

Closer to our work, AlbedoGAN [RGP*24] proposes a genera-
tive 3D face model that leverages FLAME fitting and StyleGAN2
to achieve state-of-the-art shape reconstruction accuracy. However,
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this approach omits modeling PBR materials and still contains
baked information in the albedo textures. Another recent work,
Dreamface [ZQL*23], utilizes latent diffusion models and score
distillation sampling (SDS) to generate and edit full heads through
text prompts. However, this method has limited fine-grain control
over appearance features beyond text and does not explore face
inversion. In contrast, Li et al. [LBZ*20] employ StyleGAN to
generate full faces comprising shape, middle-frequency geometry,
albedo, specular, and high-frequency displacement maps learned
from a large dataset of high-quality facial scans. Similarly, Deb
et al. [DTP23] synthesize physically-based rendering (PBR) maps
including albedo, normals, glossiness, and specular using a shape-
conditioned texture generator supervised by multiple discrimina-
tors at different resolutions.

To our knowledge, we are the first generative face model to offer
continuous control over skin properties and model the correlations
in shape and skin properties through a unified framework where
both the overall face shape, the medium and high geometric details,
and the albedo can be jointly manipulated through not only high
level demographic controls like age or gender, but also through low
level skin properties objectively estimated from albedo textures.

2.3. Unconstrained Face Reconstruction

In face reconstruction, numerous works rely on generative models
as priors to partially complete missing information and handle un-
seen parts, occlusions, and other ambiguities (e.g., material prop-
erties and lighting). These approaches vary in their focus, targeting
various components of face representation, encompassing geome-
try, albedo, and physically-based materials, either individually or in
combination.

A number of works leverage Generative Adversarial Networks
(GANSs) for this task. GANfit and Fast-GANfit [GPKZ19, GPKZ21]
combine 3DMM fitting with GAN for albedo texture generation,
helped by identity features extracted with ArcFace [DGXZ19], an
off-the-shelf state of-the-art face recognition network that has been
widely employed by the community for various goals. These in-
clude estimating facial reflectance maps from single images in
the wild [RDC*24], improving fairness in albedo estimation un-
der arbitrary illumination when used within a GAN-based genera-
tive albedo model [RDM*23], or even generating new pictures of a
given face under different poses and lighting [PPLM*24]. Also re-
lying on GANSs, Avatarme [LMG*20] presents a method for recon-
structing PBR-ready faces from in-the-wild images using a combi-
nation of 3DMM fitting, GANs and super resolution. The extension
Avatarme~++ [LMP*21] further enhances texture quality by syn-
thesizing diffuse and specular colors through an image-to-image
translation network trained on limited Light Stage [DGF15] data.
Building upon Avatarme++ data, Fitme [LMP*23] uses GAN in-
version and proposes a BRDF generative network along with a two-
stage fitting method to predict facial reflectance for unconstrained
images. With a similar philosophy of utilizing 3DMM shape re-
construction and GANSs for texture completion and super resolu-
tion, Dib et al. [DHG*24] incorporate differentiable shading for
light normalization to reconstruct the face reflectance maps. Al-
though all these models present incredible results, they often find
trouble with baked illumination, and struggle to recover skin prop-
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erties from certain ethnicities due to the unbalanced nature of their
datasets, based on human-made subjective labeling.

Beyond GANSs, a number of works rely on latent diffusion
models. Relightify [PPLMZ23] reconstructs relightable 3D faces
from a single image, focusing primarily on in-painting PBR
material maps. It relies on off-the-shelve 3DMM-fitting tech-
niques [BRZ" 16, CKPZ18] to recover visible facial geometry and
texture, completing the facial reflectance maps using a multi-modal
diffusion model. Another approach, FitDiff [GLMZ23], shares
similarities with our work, as it uses latent diffusion model to con-
currently generate shape and textures from the scratch, departing
from Gaussian noise. The geometry is defined by 3DMM coeffi-
cients and it produces albedo, specular, and normal maps. While
the model uses Arcface identity conditioning to align with a ref-
erence image, it is also capable of generating random identities.
However, its high and low level editing capabilities are limited.

Although these works achieve impressive results, they often fo-
cus on specific aspects of face reconstruction, such as geometry or
texture, and frequently rely on third-party shape extraction meth-
ods, inheriting their limitations. Additionally, these models typi-
cally overlook the correlations between shape and appearance con-
cerning high-level features like age or gender, and especially low-
level properties like skin characteristics. This oversight limits their
ability to generate faces that support bio-physical manipulations.
For instance, the recent work by Li et al. [LGLG24] showcases
plausible edits focused on aging, but it operates in 2D image space
and only employs 3D uplifting for additional details, limiting its
applicability as a generative model or as a prior for inverse render-

ing.

3. Biophysical face model

Our objective is to generate high-quality 3D faces by handling the
face geometry and appearance jointly using a generative model
conditioned on age, gender, and a set of skin biophysical proper-
ties defining the skin appearance, allowing a high level of control
over the generated face. Note that these biophysical properties (e.g.,
melanin concentration) are tightly coupled with the identity of the
generated face, including both shape and skin texture, which of-
fer fine-grained control using objective labels rather than discrete,
human-made subjective labels (e.g., ethnicity), enabling the mod-
eling of correlations between shape and material properties when
necessary, and establishing a well-bounded manifold for the gener-
ative model.

Modeling individual faces Our model builds upon a face represen-
tation consisting of a template average triangle mesh G, and a set of
textures M that encode the identity of the generated faces. For each
face, a displacement texture D € R3*PXW encodes the per-point de-
formation over G as a vector field of resolution 4 X w, effectively
capturing the macro-structural shape features of the face. The re-
maining maps in M are a height map H € RIXMw decomposed
into displacement Hyg;s,, and bump Hp), encoding medium and
high frequency geometric details, and an albedo map A € R3XAxw,
Thus, each face is represented by a set of three maps M = [D, H,AJ;
other channels (e.g., specular or roughness map) could be added,
though in this work we derive them from H (see details in Sec-
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Figure 2: Overview. Our model generates a deformation texture D, a height map H, or an albedo map A at mid resolution depending on a
text prompt p; and controlled by various conditions. Then, a Refiner receives the concatenation of these three maps to upsample the map

specified by another prompt pp by x4 resolution.

G D H disp A Hbump

Figure 3: Progressive build-up of a face from the template mesh by
adding each of the model’s output maps.

tion 5). The effect of each of the maps on the final renderings is
shown in Figure 3.

Parameter space of our model The parameter space Q2 of our gen-
erative model is defined as

Q={zc}, (D

where z € R**%0%% ig 4 latent noise vector, and ¢ € R is the set
of conditions. Identity emerges from z while biophysical attributes
are controlled through ¢, enabling independent manipulation of fa-
cial identity and characteristics. The conditions set is defined as
¢ = {a,g,m,h,o,r,e}, where a (age) is a demographic label and g
(gender) is a continuous control variable derived from biological
sex annotations in the dataset metadata. The remaining elements —
m (melanin concentration), 4 (hemoglobin concentration), o (blood
oxygenation level), r (ratio of eumelanin to pheomelanin), and e
(epidermal thickness) — are aggregated pixel statistics of the bio-
physical low-level parameters defining the appearance of the skin
and are estimated from the albedo map A [AXX*23]. Specifically,
for the oxygenation level o, the melanin types ratio r, and the epi-
dermal thickness ¢ we use the mode of the reconstructed param-
eters, while for melanin m and hemoglobin /& concentrations we
found that using the mode and standard deviation provides a more
descriptive representation, as there are faces with very even dis-
tributions and others with uneven distributions, making a total of
N =9 components.

Overview These parameters collectively define the input space for
our method. Our model F maps the parameter space 2 to a set of
high-resolution texture maps M as

F:Q—M. 2

Our model F' works in two stages: First, a multi-modal genera-
tive model or Generator maps the parameter space 2 to the texture

map set My at mid-resolution (768 x 768) (Section 3.1). Then, a
super-resolution module or Refiner takes Mg and upsamples the
generated maps H and A to achieve high-resolution details (Sec-
tion 3.2), giving the final set of textures M (2K x 2K). A high-level
overview of the model is illustrated in Figure 2.

3.1. Generator

In this section we describe our Q — M model or Generator net-
work that produces a face in the form of a set of texture maps M
conditioned by the aforementioned demographic and biophysical
labels c. Inspired by recent work in intrinsic image decomposition
and synthesis [ZDG*24] we fine-tune a text-to-image latent dif-
fusion model (LDM) [RBL*22] that operates on a downsampled
latent representation, additionally conditioned on a text prompt p
specifying the modality of the diffusion process (i.e., the map be-
ing generated, details in Section 3.1.2).

The latent representation z € R**%0*% i obtained using a pre-

trained variational autoencoder (VAE) consisting of an encoder-
decoder pair (£ and D), such that for a map M € M, the latent
vector is zg = £(M), and the reconstructed map is M’ = D(zg) =
D(E(M)).

During inference, the diffusion model iteratively denoises an
initial Gaussian-noise tensor zy € R**96%% through time steps
t € {0,...,T} to produce the target latent representation zy. Then
the VAE’s decoder D upsamples the denoised latent to a full reso-
lution map M = D(zg).

For training our diffusion model, we optimize the parameters 0
defining the velocity predictor Vg by minimizing the following loss
function

Lo = ||vi — %o(t,2:.C,1(p)) 3 3)

where t(p) is the prompt encoded via CLIP [RKH*21], C is the
embedded condition (see Section 3.1.1), and z; is the noisy latent
after adding Gaussian noise ¢ ~ N'(0,I) at time step . We use v-
prediction Lg during training, which has been shown [SH22] to
produce better results compared to traditional noise (e) prediction
methods. The target velocity v, at time-step ¢ is calculated as

Vi = (_X[E—\/l—(_X[ZO, (4)

where € is the Gaussian noise, & = 1 —¢/T is a scale function of
time, and z is the target latent encoded by the pre-trained encoder

E.
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Figure 4: Faces generated by randomly sampling identity and con-
ditions.

3.1.1. Cross-attention control with continuous-valued
conditioning.

For conditioning on the demographic metadata and biophysical
skin properties ¢ € RV, we employ a multi-layer perceptron (MLP)
of 2 hidden layers of size 1280 to encode each condition value c;.
Specifically, we encode the condition vector following

fe,-(Ci) :MLP(W(CiaO)7'~'7W(Ci7d_1))7 (5)
where fp, represents the learned MLP embedding for the condition
value ¢;, corresponding to condition type i (e.g., melanin mode),
and d is the dimension of the encoded condition vector (d = 1280,
identical to the time ¢ embedding). The input to the MLP is gener-
ated using a sinusoidal embedding function, similar to the timestep
embedding used in diffusion models, following

sin(c T%), if jis even

¢, - —2j (6)
wieJ) {cos(chz') otherwise,

where 7' = 1000 is a large constant representing the total num-
ber diffusion timesteps. Each condition value ¢ is normalized to
the range [0, T']. This approach is inspired by recent work on gen-
erative foundation models for satellite imagery [KLZ*23], which
demonstrated the effectiveness of using sinusoidal embeddings for
encoding numerical information, avoiding the shortcomings of text
encoders when dealing with numerical information, as noted in pre-
vious work [RKH*21]. Finally, the N condition vectors are con-
catenated together with time embedding as C = [fp,(c1) ® ... ®
fou (cn)]) @ fo(t). See Figure 2 for details.

3.1.2. Handling Different Modalities
Following a similar approach to RGB2X [ZDG*24], we utilize the

text prompt p as a switch for modality control, producing a single

© 2025 The Author(s).
Computer Graphics Forum published by Eurographics and John Wiley & Sons Ltd.

Figure 5: Effect of the Refiner network on two random identities.

map M at a time while storing only one network’s weights. We use
hand-picked prompts for each modality, specifically p = {"Vector
field", "Albedo Map", "Bump and Displacement Map"}, to provide
optimal descriptions and enforce distinct text embeddings to gen-
erate a deformation map D, an albedo map A and a height map H,
respectively. In addition, for trading off the quality and diversity of
the samples generated by our model, we use classifier-free guid-
ance (CFG) [HS22], which involves training the diffusion model
for both conditional and unconditional denoising. Specifically, in-
spired by a recent work [BHE23], we use CFG for two condition-
ings: One for text prompt modality control C, = t(p) and one for
¢ conditioning C. During training, we randomly set only C. = ()
for 10% of examples, only C,, = @) for 10% of examples, and both
C. =0 and Cp = 0 for 10% of examples. We combine these score
estimates during inference as follows:

Q’e(f»zhccvcp) :V9(171t707®)
+Sp'(Ve(ﬁzt:@:Cp)—Ve(t,lzﬂ):@)) (7)
+sc - (Ve(l‘,Z;,CL-,Cp) _Ve(f-,zt7®7CP))7

where the term vg(z;,0,0) is the unconditional score estimate,
where no conditioning is applied. The term vg(z;, C., D) is the score
estimate conditioned on C¢ only, and vg(z;,Ce, Cp) is the score es-
timate conditioned on both C. and Cp. The guidance scales s. and
sp control the influence of each conditioning. We empirically found
s¢ =5=%3 and sp = 5+ 3 produce the best results. Tests with vary-
ing CFG values are shown in Figure 6. We demonstrates how our
model generates a wide range of facial appearances while maintain-
ing accurate correlations between shape features, skin properties,
and demographic data in Figure 4.

3.2. Refiner

In this section we describe our super-resolution module or Refiner
network, which upsamples a given height map H or an albedo A
conditioned on a set of maps M. It presents a similar architecture to
the Generator network, also relying on text prompts p as switches.
Unlike the Generator network, it takes as input every map M € M,
downsampled in pixel space as fiown(M) € R3*192X192 concate-
nated together with a latent noise vector Z§~ € R¥X192X192 4 form
M = [faown (D) D faown(H) ® faown(A)] 2F. We employ latent dif-
fusion for 4x upsampling as it provides more stable training dy-
namics and better detail preservation compared to standard U-Net
architectures. After a number of denoising iterations, the network
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Figure 6: Using different CFG values. We show edits of the albedo
of a given identity using different CFG values. Low values would
result in subtle edits with rather minimal effect on the original
albedo, failing to reach plausible human limits, while large values
would cause undesirable artifacts.

produces the target latent image z§ = £(M), encoding the map M
by a factor of 768/192 = 4. We minimize the following loss func-
tion:

2
L = ||V =8 (r.m. €. x(0) | ®)

where C is the embedded condition (see Section 3.1.1).
Depending on the prompt p € {"AlbedoMap",
"Bump and Displacement Map"}, a latent zg is generated,
encoding either an albedo map A or height map H, respectively.
After the final denoising step, the high-resolution map (x4) is
reconstructed by the VAE decoder as D(zg ). We trained this super
resolution module by extracting 768 x 768 randomly-offset crops
from the original 4K resolution images in the dataset. During
inference, we generate a 2K map from the a down-sampled version
(512 x 512) of our initial 768 x 768 generation. The effect of
adding the Refiner network is shown in Figure 5.

3.3. Dataset

Diffusion models [SDWMG15, RBL*22] are notorious for their
high data requirements, and our high-quality 3D dataset is lim-
ited in size. To address this challenge, we train the latent diffusion
model (Section 3.1) in two stages: Initially, we pre-train our Gener-
ator model using only uv-unwrapped face albedo maps synthesized
by an existing neural model [BKZ*23] (54K faces); then, we fine-
tune F using the whole set of maps M using a high-quality dataset
of 3D assets.

Our dataset consists of 2001 high-resolution face meshes ac-
quired in a Light Stage-like [DGF15] capture setup. Our dataset is
reasonably well-balanced in certain properties, such as age and bi-
ological sex, with the latter being learned as our continuous gender

Figure 7: Distribution of labels in our dataset and Bai et al’s
model [BKZ*23], with example albedo maps showing varying
melanin concentrations.

control variable g in our model (as shown in Figure 7). However,
it is important to note that our dataset excludes makeup and hair,
which makes female versus male visual assessments challenging
based solely on skin features. Additionally, the exclusion of minors
from our capture causes the evaluation benchmark to be biased to-
ward older faces. Despite these characteristics, the model learns the
entire biophysical space and generates diverse faces as shown in
Figure 4. However, we plan to extend the dataset to better represent
the diversity of the population, since it remains unbalanced in other
domains, like melanin concentration. Nevertheless, the model per-
forms adequately across various biophysical properties within plau-
sible ranges, as shown in Section 5. We made a conscious decision
not to perform data augmentation through manipulations of skin
properties estimated from the albedo maps to balance the dataset.
This would have disrupted the realistic correlations between shape
and skin material properties. By maintaining the natural variabil-
ity in our dataset, we aim to model real-world face geometry and
appearance more accurately.

Each mesh has 379,289 vertices and is accompanied by high-
quality normal and albedo maps, unwrapped in UV space at a 4K
resolution. All assets share a common geometric topology and UV
parametrization. We extract the base geometry G by computing the
average face from all faces in the dataset, leveraging the 1-to-1
correspondence in mesh vertices. We denote the set of meshes as
{G;}Y.,, where each mesh G; has a set of vertices {v?}‘j/:l. The

average vertex 7; is computed as v; = %Zi»\[zl vlj For each mesh
G; we compute the per-vertex displacement as an unormalized vec-
tor dj- = vi- — ¥, which is projected in uv space, encoding D as a
vector displacement field. For further details on how the remaining
physically-based rendering (PBR) maps are generated and used to

render the faces photorealistically, please refer to Section 5.

The nature of our deformation D and bump Hp,,,, maps poses
a challenge for directly using the variational autoencoder (VAE)
trained on natural images, as these maps exhibit zero-mean distri-
butions with high kurtosis and heavy tails. This results in the recon-
structed map M’ = D(£(M)) differing from the original map M. To
address this, we enhance the contrast of the deformation and bump
maps to broaden their pixel distributions, making them more simi-
lar to those of natural images. Specifically, we apply a regular nor-
malization between 0 and 1 for the bump map, and a sigmoid-like
normalization for the deformation map. For the deformation map
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Figure 8: Normalized pixel distributions (D) and generated maps
(Hpymp scaled x5 for visibility) for a representative identity.

D € R? (normalized into the range [—1,1]), we apply the trans-
formation D' = Helﬁ where s is the sharpness parameter that
controls the degree of emphasis around zero. We empirically found
that a value of s = 10 performs best. Once generated, we invert this

transformation using D = f% -In <ﬁ — l>. This step is critical, as
subtle artifacts in pixel values, especially in the deformation map D,

can result in significant deformations of the mesh. Figure 8 shows
the pixel distributions of the original maps and the actual maps.

The biophysical properties we use as control parameters are es-
timated using Aliaga et al. [AXX*23], which has been thoroughly
validated against the Leeds spectral dataset [XYZ"17] containing
measurements from diverse subjects. This validation ensures our
model operates within physically plausible parameter ranges.

4. Face inversion and editing

In this section, we demonstrate two applications that showcase our
model’s capabilities beyond generation. First, we describe our ap-
proach to inverting and editing 3D captured faces. Then, we show
how our model can be combined with differentiable rendering tech-
niques to estimate face maps from reference images. These appli-
cations illustrate how our model serves as a powerful prior for in-
verse problems while maintaining physical plausibility through its
biophysically-grounded parameter space.

4.1. Inverting and editing face maps

In this section, we describe the methodology for using our model
to edit captured 3D faces. We begin with any given map, such as
an albedo map A, and invert to its corresponding noisy latent z7.
Then, we can run the model to regenerate this map A’ = D(zg) or
apply edits through the denoising process to create plausible edited

versions of A” = D(z5%). It is important to note that once zy or
z(e)d‘t are reconstructed, they can also be used to produce plausible
deformation D and height H maps from a single input albedo A.

To achieve this, it is necessary to invert zg to its corresponding
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Algorithm 1 Map Inversion and Editing

Input: A source C, a target Cegy, a source latent zg’ "™
Output: An edited latent z(e)d"

Part I: Inverse z}""

1: Za' — Z(s)ource
2: fort=1toT do
3: z; + DDIM Inversion(z;_;,t —1,C)
4: end for
Part I1: Perform editing on z; with Direct Inversion
Cooedit ok 1 %
5: Zy =17 1y =17
6: fort =T to 1 do
7. o'« 2z, —DDIM Fwd(z/,1,C)
8: z' | = DDIM Forward(z,’ ,7,C) + o' !
9: 224 < DDIM Forward(z§", 7, Cegy) + 0’ !

10: end for
edit

11: return z; > Return the final edited latent

Algorithm 2 Differentiable Rendering Guidance

1: function DRGUIDANCE(z;, Ce, Cp, Lref)
2: 2y < V < Vo(z,Cc,Cp) > Directly estimate z
> Stage 1: Optimize Diff. Rendering parameters
for i = 1to Npg do
Icurrent <— DifferentiableRenderer(P)
ﬁP — leef —IcurremHZ
Update P via backpropagation with Lp
end for
Mtarget —~M+—P
> Stage 2: Optimize velocity prediction

e A A

9: for i =1to Ny do

10: Meurrent < D(zg); 29 < ¥
11: Ly ||Mtarget *Mcurrent”Z
12: Update v via backpropagation with Ly,
13: end for
return v

14: end function

latent noise z7 and back to zg or zgd't. In deterministic diffusion im-

plicit models (DDIM) [SME20], zy — zr is typically accomplished
by performing DDIM inversion, which assumes that the ordinary
differential equation (ODE) process can be reversed in the limit of
infinitesimally small steps . However, this assumption cannot be
guaranteed [JZB*23], resulting in a perturbation z; — z;". An addi-
tional perturbation z7 — z, occurs when using DDIM sampling to
generate a latent map z; from a random noise vector zj-. In addition,
as we condition using CFG (Section 3.1.2), a further perturbation
7, — z;’ arises. The accuracy of this inversion process significantly
impacts the final editing outcome, influencing both the preserva-
tion of essential content from the source map, in our case the iden-
tity, and the fidelity of the edits. Consequently, following Direct
Inversion [JZB*23], we disentangle the source and target editing
branches and enable the source branch to rectify the deviation path
directly. Specifically, Direct Inversion first computes the distance
o'l =z, —2/,, then adds the difference back to z | in the
DDIM forward process. As for C, we assume age and gender are
given, and skin properties estimated using the method of Aliaga et
al. [AXX*23]. The process is detailed in Algorithm 1.
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4.2. Face Reconstruction with Differentiable Rendering
Guidance

In this section, we demonstrate how our model can be integrated
with differentiable rendering (DR) to reconstruct a face from ei-
ther a single view I, or multiple views Lt = {Irlef,lrzef7 Y
of a subject. Our model acts as a prior, effectively constraining the
differentiable rendering optimization. The output is a set of recon-
structed face maps, M, along with other unknown parameters P,
such as environmental lighting.

The key to this approach is to incorporate an additional guid-
ance term into the denoising process, utilizing a score computed
with the assistance of the differentiable renderer. We achieve this
by expanding CFG in Equation 7 to:

ee(nzhcﬁcp) = Ve(t7zl7®7®)
+Sp : (VQ(I,Z[7®,CP) _Ve(tvzl7®7®))
+ spr - (DRGuidance(z;,Ce, Cp, Ier) — Vo (2,2:,0,Cp))

+s¢ - (vo(t,2:,Cc,Cp) — DRGuidance(z;, Cc,Cp, Lief) ).
(&)

Note that the biophysical and demographic guidance C. is ap-
plied last in the CFG after DRGuidance, as we empirically found
that it imposes stronger constraints for reconstructing plausible
faces, whereas having DRGuidance last can overly bias the results
towards faces that may fall outside our plausible biophysical space,
creating artifacts specially when ambiguity is high (e.g. single view
scenarios).

The velocity prediction from DRGuidance is obtained as follows
(Algorithm 2): Through the denoising process, we estimate the fi-
nal latent z( directly from an intermediate time step ¢, similar to
Galanakis et al. [GLMZ23], to obtain a map M. This map is com-
bined with other rendering parameters P (e.g., lighting) to form the
complete set P = (M, ®), which is used to render an image of the
face 1. We use the differentiable renderer to optimize the parameters
P for Npg iterations, minimizing Lp < ||I'; — I||2. The optimized
map M in P is then used as a target Mtarget to optimize, for Ny=10
iterations (using Adam optimizer), the velocity prediction v; ulti-
mately returned for CFG guidance.

The denoising process is executed over 50 iterations in total.
The cpr guidance within the CFG is initiated at iteration 5, once
the modality ¢, has stabilized. However, in practice, it can be ap-
plied as late as iteration 35. In our experiments, the guidance scales
s¢ =2.0, spr =4.0, and sp = 1.1 produced the most optimal results.
Finally, after completing the denoising process, we employ the dif-
ferentiable renderer to further optimize the rendering parameters P,
refining the result to better match the reference image.

5. Experiments

We use Mitsuba 3 [JSR*22] to render the faces, using a custom
skin model featuring a double GGX [WMLTO07] specular lobe,
and a subsurface diffuse component computed using Monte Carlo
random walks on a homogeneous medium. The optical parame-
ters of the medium are obtained using numerical albedo inver-
sion [WVH17] from the albedo map A, as well as its mean free path
and its anisotropy coefficient. The parameters associated with the

Figure 9: Random identities generated with fixed combinations of
demographic and biophysical conditions. The model preserves not
only the overall skin tone but also the distribution of facial hetero-
geneities across distinctly different identities.

specular lobes were manually adjusted through look development,
and we empirically established two heuristics for their creation, de-
rived directly from the height map H (Hyjsp, + Hpump)- Specifically,
the specular roughness is set to S ~ H, and the specular intensity
is defined as S; ~ 3H.

Generating bio-physically plausible faces We present several re-
sults showing the biophysical space of faces and edits. Figure 4
shows different generated faces by randomly sampling both identi-
ties and conditions, showcasing how the model covers a wide range
of appearances. Then we explore the space of identities and condi-
tions (Figure 1), isolating identities (Figure 9) and conditions (Fig-
ure 15), which desmonstrates the model’s capability of fine grained
control over the skin tone and the distribution of facial hetero-
geneities. Figure 14 shows the interpolation between two different
identities, shows a smooth transition between the two identities,
and how the model is able to interpolate between subjects.

Comparisons Figure 10 shows comparisons with simpler heuris-
tics over the skin property maps. Our model produces richer het-
erogeneities and variations, capturing not only geometric changes
but also medium and high frequency details and nuances. In Fig-
ure 11, we compare our aging control with Iglesias-Guitian et al.’s
model [IGAJG15]. Our model captures subtle changes in skin color
as predicted by Iglesias-Guitian et al., but also includes rich hetero-
geneities, pronounced wrinkles, and larger geometric changes that
are not present in their model.

Applications Figure 15 shows the results for 3D face asset inver-
sion (Section 4.1), where from a random initialization Mg we are
able to reconstruct M to match a given asset (second column), and
to alter the condition vector C to provide high-level editing of the
face on several different axes (columns 3 to 8). Additionally, we
provide extended results showcasing a wider variety of identities
and edits in the Supplemental Material. The results of our recon-
struction pipeline (Section 4.2) are shown in Figures 12 and 13, for

© 2025 The Author(s).
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Original +M (Heurist.) +M (Ours) -M (Heurist.) -M (Ours)

+B (Heurist.) +B (Ours) ++B (Heurist.) ++B (Ours)

Figure 10: Comparison with a heuristic-based method, where we
manipulate the properties using Aliaga et al. [AXX*23] to empiri-
cally reproduce the resulting albedo map from our model. Specifi-
cally, we increase/decrease melanin by 300% /90% and blood con-
centration by 150%/300% to simulate the effects of +Melanin, -
Melanin, +Blood, and ++Blood, respectively.

Original [IGAJG15] Ours

Figure 11: Comparison of our aging control with Iglesias-Guitian
et al.’s aging model [IGAJG15] on two identities. We reconstruct
the original albedo using Aliaga et al. [AXX*23] and simulate ag-
ing by reducing melanin concentration, blood concentration, and
epidermal thickness by approximately 20%, following Iglesias et
al.’s aging model (6% per decade over 3 decades).

albedo and shape inversion respectively; compared to using prior-
less differentiable rendering, we are able to reconstruct a closer
match, which is more robust to the illumination by staying on a
plausible manifold defined by the latent space, and even inpainting
occluded regions in the reference. The performance of the different
methods in both applications is summarized in Table 1.

6. Conclusion

We introduced a novel generative model that advances the synthe-
sis of photorealistic faces by capturing the intricate relationships
between facial geometry and biophysical skin properties. Our ap-
proach enables continuous modeling of skin properties by objec-
tively extracting them from the albedo, eliminating the reliance on
subjective human annotations. This ensures that the generated faces
and the editing space are biophysically plausible. Beyond genera-
tion, the model demonstrates its versatility in applications such as

© 2025 The Author(s).
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Figure 12: Reconstruction of the albedo map and environment map
from a single view. Left to right: initial state; differentiable ren-
dering only (naive); ours method; our method with differentiable
rendering; and the reference image, with the environmental map as
an inset. From top to bottom: renderings using the optimized albe-
dos and environment maps for the same reference view; optimized
albedo textures, with the estimated environmental maps shown as
insets; and renderings using the optimized albedos, with changes
in both lighting and viewpoint. Note that the reconstructed envi-
ronmental maps are inherently low-frequency due to the face’s re-
flectance acting as a low-pass filter.

Figure 13: Reconstruction of the deformation map from a single
view. From left to right: initial state; differentiable rendering only
(naive); ours method; our method with differentiable rendering; and
the reference face (note that we use the same reference view during
the optimization as in Figure 12). We show renderings with the re-
constructed deformation map and a constant albedo (first row) and
a checkerboard texture to better appreciate the changes in geometry
(second row).

editing 3D face assets and serving as a prior in inverse rendering.
The model produces faces that are ready for integration into com-
puter graphics engines, offering relightability and riggability.

However, there are several limitations that can spark future lines
of work. The current model is limited to static faces and does not
account for facial expressions or dynamics. The model also focuses
on stationary properties like skin albedo and bump maps, without
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Figure 14: For the three identities in the first column, we display progressive interpolation steps in the latent space toward the three identities

in the last column, demonstrating the smoothness of our biophysical space.

Figure 15: Face Asset Inversion and Editing. Each row demonstrates the reconstruction of an identity through DDIM, followed by progres-
sive editing based on one of the conditions from left to right. The results illustrate the model’s ability to effectively manipulate facial features

while maintaining the identity.

© 2025 The Author(s).
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Method Metrics (MAE / MSE / PSNR)

Texture (Fig. 12) Shape (Fig. 13)
init 0.0618 /0.0065/21.84 | 0.0595/0.0153/18.16
DR 0.0920/0.0119/19.25 | 0.0624/0.0114/19.45
Ours 0.0426/0.0030/25.26 | 0.0604/0.0137/18.63
Ours DR | 0.0377/0.0024 /26.28 | 0.0358/0.0048 / 23.19

Table 1: Performance comparison using MAE, MSE, and PSNR
metrics of different methods inverting: a) albedo and lighting
jointly and b) shape . Our method outperforms naive differentiable
rendering optimization, further improving when combining both
through guidance.

incorporating specular maps due to their transient nature. Further-
more, at rendering time, empirical heuristics derived from produc-
tion workflows are used to render the specular reflectance, not phys-
ically grounded in Fresnel theory. While effective for control, this
approach could be replaced by more accurate IOR-based Fresnel
reflectance models. Additionally, it lacks sub-pore level details and
other facial components such as eyes and facial hair. Regarding
the dataset used for finetuning, we want to improve its balance to
ensure fairness across demographic groups; it has limited represen-
tation of South Asian individuals, which may impact the generaliz-
ability of our findings and highlights the need for more diverse data
collection in future studies. Last, by using continuous biophysical
parameters instead of explicit racial categories, we may not fully
capture the nuances of certain facial features. An interesting direc-
tion for future research is to investigate how skin properties vary
across different ethnicities in order to add it as a control variable.
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